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We integrate numerically the Kardar-Parisi-Zhang �KPZ� equation in 1+1 and 2+1 dimensions using a
Euler discretization scheme and the replacement of ��h�2 by exponentially decreasing functions of that quan-
tity to suppress instabilities. When applied to the equation in 1+1 dimensions, the method of instability control
provides values of scaling amplitudes consistent with exactly known results, in contrast to the deviations
generated by the original scheme. In 2+1 dimensions, we spanned a range of the model parameters where
transients with Edwards-Wilkinson or random growth are not observed, in box sizes 8�L�128. We obtain a
roughness exponent of 0.37���0.40 and steady state height distributions with skewness S=0.25�0.01 and
kurtosis Q=0.15�0.1. These estimates are obtained after extrapolations to the large L limit, which is necessary
due to significant finite-size effects in the estimates of effective exponents and height distributions. On the
other hand, the steady state roughness distributions show weak scaling corrections and evidence of stretched
exponential tails. These results confirm previous estimates from lattice models, showing their reliability as
representatives of the KPZ class.
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I. INTRODUCTION

Nearly two decades ago, the Kardar-Parisi-Zhang �KPZ�
equation,

�h

�t
= ��2h + ���h�2 + ��x�,t� , �1�

was proposed as a hydrodynamic description of interface
growth �1�. In Eq. �1�, h is the interface height at position x�
and time t, the linear term represents the effect of surface
tension, the nonlinear term accounts for an excess velocity
due to local slopes, and � is a Gaussian noise with zero mean

and co-variance ���x� , t���x�� , t���=D�d�x� −x�� ���t− t��, where
D is constant and d is the dimension of the substrate. Several
applications of the KPZ equation are cataloged in Refs. �2–4�
and recent examples in d=1 and d=2 are presented in Refs.
�5,6�. These applications and the intrinsic interest as a non-
equilibrium statistical mechanical model motivated an in-
tense theoretical study of its properties and of properties of
lattice models in the KPZ class, i.e., models which obey the
KPZ equation in the continuum limit �long times, large
sizes�.

Many properties of KPZ systems in d=1 are known be-
cause the steady state height distribution for periodic bound-
aries is the same as for the Edwards-Wilkinson equation �the
case �=0-EW� �7�. This result and the Galilean invariance
property provide the exact values of the scaling exponents of
the average surface roughness �1,2�. The full height distribu-
tions for other boundary conditions in d=1 are also known
�5,8�, but controversies on the universality of correlation
functions exist �9� and are the subject of current work �10�.

On the other hand, a small number of exact results are
known in the most important case for applications to real

systems, which is d=2. Exponent estimates were obtained in
d	2 from some analytical approaches �11–14�, but their
predictions usually deviate from accurate numerical results
of lattice models �15–17�. Height and roughness distributions
were also calculated numerically �15–20� because they may
be useful for comparison with real systems data and for ad-
ditional tests of the analytical predictions. However, the ac-
curate numerical data currently available were obtained only
from two or three lattice models, such as the restricted solid-
on-solid �RSOS� model �21�, because those works aim at
reducing scaling corrections to improve the accuracy of the
final estimates. Consequently, no systematic variation of the
parameters of the KPZ equation can be performed in such
works �although the parameters of the KPZ equation associ-
ated to each lattice model may be determined by inverse
methods �22,23��.

It is certainly desirable that the universality of the above
mentioned quantities is also tested with the KPZ equation
itself with a suitable variation of its coefficients. Indeed, the
integration of the KPZ equation was already performed by
several authors �24–31�. However, they usually focus on the
calculation of scaling exponents �which typically have lower
accuracy than the discrete models data�. Giada et al. �29�
discussed the relevance of other quantities to characterize
KPZ scaling, such as the skewness of height distributions,
but they did not determine their universal values. The most
recent work on the subject seems to be that of Ma et al. �30�,
which suggests exponent values very different from the pre-
vious ones.

The aim of this work is to fill that gap by analyzing nu-
merical results for height and roughness distributions in the
steady state of the KPZ equation with several sets of coeffi-
cients. Estimates of roughness exponents will also be pro-
vided here. Our results confirm the universality of these
quantities, with the values previously suggested by lattice
model simulation. Of particular relevance is to confirm that
the roughness distribution has a stretched exponential tail,
which reflects the non-Gaussian behavior of the interface.
We also show that the calculation of reliable roughness ex-
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ponents and of dimensionless amplitude ratios characterizing
the height distribution has to account for the presence of
finite-size corrections, which are much smaller in the scaling
of roughness distributions. These features resemble those
found in lattice models and show that the finite-size correc-
tions are not artifacts of those models.

We will adopt a Euler scheme for integration. The main
problem of using a simple version of this method �27� is the
onset of instabilities in the growing interface at long times,
as indicated by the divergence of the height at a certain po-
sition �32,33�. However, we will control this instability by
replacing the square gradient in Eq. �1� by an exponentially
decreasing function of this quantity, as suggested by Das-
gupta et al. �32,33�. Another previously reported problem of
the simple Euler scheme is the anomalous value of the am-
plitude of steady state roughness scaling in d=1 �34�. How-
ever, we will show that this anomaly also disappears with the
introduction of the exponentially decreasing nonlinear term,
without needing special discretization schemes. The use of a
framework which avoids different types of anomaly in the
integration of the KPZ equation is certainly relevant and is a
subject of current interest even for studies in d=1 �31�.

The rest of this work is organized as follows. In Sec. II we
present the quantities of interest of this work. In Sec. III we
present the integration scheme and show results for the one-
dimensional case, where exact solutions are known. In Sec.
IV we present the results in d=2. In Sec. V we summarize
our results and present our conclusions.

II. THE QUANTITIES OF INTEREST

The simplest quantitative characteristic of a given inter-
face is its roughness �2�, also called the interface width, de-
fined as the root mean square �rms� fluctuation of the height
around the average position. The squared roughness, w2

�h2− h̄2, is usually averaged over different configurations,
and its scaling on time and length is used to describe non-
equilibrium growth processes. For short times, the average
roughness scales as

�w2� � Bt2
, �2�

where 
 is called the growth exponent and B is a scaling
amplitude. For long times, in a finite system of size L, a
steady state is attained, with the average width saturating at

�w2�sat 	 AL2�, �3�

where � is called the roughness exponent and A is another
scaling amplitude.

The exponents � and 
, as well as the dynamical expo-
nent z=� /
, are the quantities most frequently used to char-
acterize a given universality class of growth. For the KPZ
class, Galilean invariance leads to the additional exact rela-
tion �+z=2 �1,2�.

A better description of the interface is provided by the full
height distribution, measured relative to the average height.
The moments of the steady state height distribution,

Wn � ��h − h̄�n� , �4�

may be used to characterize it. Numerical works usually con-
sider some dimensionless amplitude ratios for this purpose
�18,19�, particularly if finite-size effects in the scaled height
distributions are found and extrapolations to infinite system
size are necessary �15,17�. The lowest order ratios are the
skewness,

S �
W3

W2
3/2 , �5�

which is related to the asymmetry of the distribution, and the
kurtosis,

Q �
W4

W2
2 − 3, �6�

which is related to the weight of the tails of the distribution
relative to a Gaussian.

Recent works suggest that the statistics of global quanti-
ties may be more useful for characterizing an interface
growth problem. The main quantity of interest is certainly
the squared roughness �35–37�, whose probability of being in
the range �w2 ,w2+dw2� will be denoted by Pw�w2�dw2. The
probability density Pw is expected to scale as

Pw�w2� =
1

�
�
w2 − �w2�

�
� , �7�

where ����w2
2�− �w2�2 is the rms deviation. Compared to

other scaling forms for Pw�w2�, Eq. �7� has the advantage of
being less sensitive to finite-size effects and, consequently,
more useful in data collapse work �38�. Anyway, comparison
of dimensionless ratios such as the skewness and the kurtosis
of roughness distributions are important quantitative tests.

III. INTEGRATION METHOD AND RESULTS IN
d=1

The usual discretization of Eq. �1� follows the lines of
Ref. �27�, which gives in d=1

h�t + t� − h�t� =
t

�x�2��h�x − 1� − 2h�x� + h�x + 1��

+
1

8
��h�x + 1� − h�x − 1��2� + ��12tR�t� .

�8�

In Eq. �8�, ���2D / �x�d and R is a random number taken
from a uniform distribution in the interval �−0.5, +0.5�. In
2+1 dimensions, similar contributions of the y direction to
the Laplacian and to the square gradient are added to the
right side of Eq. �8�.

The spatial step x=1 can be used without loss of gener-
ality, since decreasing x would be equivalent to decreasing
the parameter � in Eq. �1� �26,27,34�. Here, the lattice size L
used in the numerical integration has maximum values L
=128 both in d=1 and d=2. On the other hand, t has to be
sufficiently small to provide accurate results. One ensures
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that a certain value of t is suitable for a certain set of
parameters by verifying that further decreasing its value does
not change the results. As usual, we adopt �, �, and g
��2D /�3 as free parameters in the discretized equation �27�.

Although Eq. �8� provides reliable estimates of growth
and roughness exponents in d=1 with relatively small sys-
tem sizes, this discretization procedure has some problems.
First, Lam and Shin �34� showed that it provides incorrect
values of the scaling amplitude A in Eq. �3�, which depends
on � and D. The deviation from the expected exact value of
A is observed even after extrapolation to L→�. The same
authors proposed an improved discretization in 1+1 dimen-
sions �39�, but it was based on particular properties of the
KPZ equation in that dimension and, consequently, cannot be
extended to the main case of interest here �2+1 dimensions�.
Second, Dasgupta et al. �32,33� showed that the above dis-
cretization generates instabilities in the interface, in which
isolated pillars or grooves grow in time on an otherwise flat
interface. In d=1, these instabilities typically appear for
large values of g and for sufficiently long integration times
and/or lattice sizes. Moreover, these instabilities are not a
consequence of unsuitably large time steps, but an intrinsic
feature of the discretization of the KPZ and other nonlinear
equations �33�.

In order to solve the second problem �the instabilities�,
here we adopt the scheme proposed in Refs. �32,33�, in
which ��h�2 in the KPZ equation is replaced by f(��h�2),
where

f�x� � �1 − e−cx�/c , �9�

with c being an adjustable parameter. This method avoids
that large local height differences lead to very large growth
rates, which is the origin of the instabilities �33�. The new
discretized equation is obtained along the same lines of Eq.
�8�, i.e., the square gradient is estimated from the nearest
neighbor height differences in all spatial directions and the
corresponding value of f(��h�2) is calculated from it.

Notice that the replacement of ��h�2 by f(��h�2) corre-
sponds to the introduction of an infinite series of higher-
order nonlinear terms in the KPZ equation. Their introduc-
tion does not change the scaling exponents and other
universal quantities �2�.

Figures 1�a� and 1�b� illustrate the growth of an instability

when Eq. �8� is used with �=1, D=1, and g=48, in a one-
dimensional interface with L=500, when time increases from
55.5 to 55.8 �t=0.05 there�. This instability disappears after
the replacement of ��h�2 by f(��h�2) with c=1 and integra-
tion with the same parameters. It is important to stress that c
cannot be very large, otherwise nonlinear effects become
very weak and a long transient with EW scaling is found
�similar to what happens in lattice models—see, e.g., Ref.
�40��. Anyway, in all our simulations in d=1 and d=2 using
c not too small, no instability was observed in the growth
regimes nor in the �very long� steady states.

During the integration of Eq. �8� with and without the
instability control, we also analyzed the first problem men-
tioned above. Restricting the comparison to situations where
no instability is observed �small � and small lattice sizes�, we
measured the amplitude

A� � 12�w2�sat/L �10�

in the steady states. It is expected that A�→1 as L→� ��
=1 /2 in d=1� �41�.

The finite-size estimates of A� are shown in Fig. 2. With
the simple Euler method �Eq. �8��, the numerical value of A�
converges to a value close to 0.85, as reported in Ref. �34�.
However, this discrepancy is also eliminated with the new
discretization, i.e., with f(��h�2) replacing ��h�2. Figure 2
clearly shows that the finite-size estimates of A� are consis-
tent with an asymptotic value A�=1 within small error bars.

Thus the method to control instabilities also solves an-
other problem related to the discretization of the KPZ equa-
tion, which is the incorrect estimation of scaling amplitudes
in the regime where the original discretization �Eq. �8��
seems to be stable. This advances over most previous works
on the subject because, as far as we know, they analyzed
those anomalies separately. The only exception seems to be a
recent work which compared the original Euler scheme and
pseudospectral methods �31�, which shows that the latter
avoids instabilities in d=1 and provides the correct value of
the amplitude A� �31�. One difference from the present ap-
proach is that here the KPZ equation was modified in real
space. Another important difference is that instability sup-
pression with the pseudospectral method requires small time
steps such as t�10−3, while with t�10−2 they have a
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FIG. 1. Interface profiles in d=1 obtained in the integration of
the KPZ equation with Eq. �8� in times �a� t=55.5 and �b� t=55.8.
Notice the different vertical scale in �a� and �b� due to the rapid
growth of an instability in x	120.
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FIG. 2. Amplitude of squared roughness as a function of inverse
box size obtained in the integration of the KPZ equation in d=1
with Eq. �8� �circles� and modified Eq. �8� replacing ��h�2 by
f(��h�2) with c=1 �squares�.
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non-negligible chance to appear in d=1 �31�. On the other
hand, here we obtained satisfactory results with t�10−2 in
d=1 and d=2.

IV. RESULTS IN d=2

Here we consider four sets of values of the model param-
eters, with �=0.5 and �=0.1 kept fixed and varying g
��2D /�3, which corresponds to different intensities of the
nonlinearity. Suitable values of the constant c were chosen to
avoid instabilities, typically increasing with g. The values of
the parameters used in each data set are shown in Table I, in
increasing order of nonlinearity from A to D.

Our aim is to span a reasonable region of the parameter
space, but both very small and very large g are difficult to
work with. Small nonlinearities must be avoided because the
results would show long transients with EW scaling �40� or
with random growth. In such cases, KPZ scaling would only
be observed in very large box sizes, where it is difficult to
generate a large number of independent steady state configu-
rations due to the large saturation times �z	1.6 �17��. On the
other hand, working with very high g is not good because the
large values of c introduce large irrelevant terms in the KPZ
equation which play a role in the finite-size scaling, possibly
showing crossovers from other dynamics.

We worked with five different box sizes, ranging from L
=8 to L=128. The time step here was t=0.04, and x
=y=1, for all sets of the parameters. Maximum simulation
times ranged from 103 for the smaller sizes to 104 for the
largest one. These times are much larger than the saturation
times, so that long steady state regimes were obtained in
each realization. The total number of realizations for each set
of model parameters was 2�103 for 8�L�64 and 103 for
L=128.

Finite-size estimates of the roughness exponents were cal-
culated as

��L� �
1

2

ln��w2��L�/�w2��L/2��
ln 2

. �11�

These effective exponents are expected to converge to the
dominant, asymptotic exponent � as L→�. However, work
on discrete models and with growth equations show that Eq.
�3� may have correction terms, which leads to an L depen-
dence of ��L�.

In Fig. 3 we show ��L� vs 1 /L for all sets of parameters
of the KPZ equation. Since we were not able to obtain results
in large box sizes in a reasonable computation time, the es-

timates of � are not so accurate as those calculated from
lattice models �15,17�. For small nonlinearity �set A�, we
note a significant size dependence of ��L�, thus the extrapo-
lation for L→� has a lower accuracy than that for sets B and
C. The trend of the data for set D �high nonlinearity� is
different from the other sets, probably due to a much more
complex crossover to the asymptotic scaling.

For the above reasons, our extrapolation of the effective
exponents is mainly based on the behavior of the data sets B
and C, which give 0.37���0.40 �we adopted the same
extrapolation methods of Ref. �17� for all sets�. These values
agree with the best current estimate �	0.39 from the lattice
models �15,17�, which suggests that those models actually
work as representatives of the KPZ class. The trend of all
data sets in Fig. 3 suggest that the simple rational guess �
=2 /5 �proposed in Ref. �11�� is not valid, although it is not
discarded from the final error bar.

The former estimates of � from integration of the KPZ
equation were as low as 0.18 �24� and 0.24 �25�, but subse-
quent works provided estimates closer to 0.4 �26,28�. The
exponent 
=0.24 obtained by Moser et al. �27� is consistent
with the latter values �using �+z=2�. A recent work with a
pseudospectral method provided estimates ranging from 0.38
to 0.40 �central estimates� from the scaling of different quan-
tities. Thus it is surprising that the most recent numerical
solution of the KPZ equation �30� suggests that z=2 and that
the exact result �+z=2 is not obeyed. We believe that this
discrepancy is caused by the use of very low nonlinearities in
Ref. �30�, which leads to a long EW regime. In this case,
KPZ scaling can only be detected in very large boxes and
very long times.

Now we turn to the analysis of the height distributions.
Due to finite-size effects, we focus on the scaling of dimen-
sionless amplitude ratios that characterize those distributions.
Thus in Figs. 4�a� and 4�b� we show the skewness and the
kurtosis of the height distribution, respectively, as a function
of 1 /L.

Estimates of S are accurate and consistent with an asym-
metry in the distribution, with positive S meaning sharp
peaks and flat valleys �for positive ��. Since S=0 for EW
growth, a small value of S is a signature of a crossover from
EW to KPZ. This is consistent with the results for L=8 and
L=16 in Fig. 4�a�, which show increasing S for increasing
nonlinearity, with S	0.05 for the smallest g �set A�.

TABLE I. Nonlinear parameters used in the integration of the
KPZ equation in 2+1 dimensions and the corresponding constant
for controlling instabilities. In all cases, �=0.5 and �=0.1.

Set g c

A 12 0.1

B 24 0.5

C 48 1.0

D 96 4.0

0.02 0.04 0.06
1/L

0.20

0.30

0.40

α(
L

)

FIG. 3. Effective roughness exponents as a function of inverse
box size for KPZ interfaces in 2+1 dimensions. The symbols cor-
respond to sets A �diamonds�, B �squares�, C �circles�, and D
�crosses�. For L�64, error bars are smaller than the size of the data
points. For L=128, uncertainties in ��L� are near 0.01.
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Universality of S in the continuum limit is suggested by
extrapolation of the results of all sets to 1 /L→0. The inter-
sections of at least two extrapolated values, with the corre-
sponding error bars, lead to S=0.25�0.01. The central esti-
mate is slightly below the value �S�=0.26�0.01 obtained in
the discrete models �15,17�, suggesting that �S�=0.25 up to
two decimal places. Here we recall that negative � would
lead to negative S, but with a universal �S�, as discussed in
Ref. �17�.

The estimates of the kurtosis Q are less accurate, mainly
for the largest sizes, but extrapolations indicate a universal
positive Q. Intersections of at least two extrapolated values
lead to Q=0.15�0.1, which is also consistent with the esti-
mate Q=0.134�0.015 obtained in discrete models �15,17�.

Now we discuss the roughness distribution scaling. In Fig.
5 we show the scaled distributions �using Eq. �7�� for two
sets of parameters �C and D� in box size L=128 and the
distribution for the RSOS model in lattice size L=256 �20�.
The excellent agreement of these curves in three decades of
the scaled probability density illustrates the universality pre-
viously suggested by simulation of discrete models �20�.
Comparison of results in L=64 and L=32 show that finite-
size effects are very small. Quantitative evidence of the
agreement is provided by the estimates of their skewness and
kurtosis: averaging results for all sets, we obtain S
=1.73�0.04 and Q=5.6�1.1, which must be compared
with lattice models data S=1.70�0.02 and Q=5.4�0.3
�20�. Here, the largest deviations from the central values are

provided by the sets A and D, similar to the other quantities.
However, those deviations are so slight that they cannot be
detected by visual inspection of the distributions �see, e.g.,
the data for set D in Fig. 5�. Overall averages of S and Q are
fully consistent with universality of roughness distributions,
and the above discussion reinforces the conclusion that they
have much smaller corrections to scaling than other quanti-
ties.

An important feature of the KPZ roughness distribution is
the apparently stretched exponential tail, which is suggested
in Fig. 5 by a small upward curvature in the right tail. In
order to analyze the tails of our curves, we assume that �

��PL�w2� decays as ��x��exp�−Ax��, where x�
w2−�w2�

�
�see Eq. �7��. Thus estimates of the exponent � can be ob-
tained from

��x� =
ln�ln���x��/ln���x − ���

ln�x/�x − ��
, �12�

with constant .
In Fig. 6 we show ��x� vs 1 /x2 for three sets of param-

eters �B, C, and D� and L=64, using =4 in Eq. �12�. This
box size was used because fluctuations in the tails of the
distributions for L=128 are much larger. The trend of the
data as x→� suggests that the tail of the roughness distribu-
tion is a stretched exponential with an exponent between �
=0.7 and �=0.9. This is consistent with results of lattice
models, which give �	0.8.

V. CONCLUSION

We solved numerically the KPZ equation in 1+1 and 2
+1 dimensions with a Euler discretization scheme. The 1
+1-dimensional case confirms the appearance of instabilities
for high nonlinearities and large box sizes. These instabilities
are suppressed by replacement of ��h�2 by an exponentially
decreasing function of this quantity in the KPZ equation and
subsequent discretization. Moreover, this change leads to
consistent estimates of scaling amplitudes, in contrast to the
discretization scheme of the original equation. In 2+1 di-
mensions, we spanned a reasonable range of the model pa-
rameters where crossover effects �i.e., transients with EW
growth or random growth� are not observed. We confirmed
the universality of roughness exponents, height distributions,
and roughness distributions in the steady state, which were
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FIG. 4. �a� Skewness and �b� kurtosis of the height distributions
of KPZ interfaces in 2+1 dimensions vs inverse box size. Each
symbol corresponds to the same set of Fig. 3. Error bars in S are of
the order of the size of the data points. Uncertainties in Q are near
0.02 for L�64 and near 0.05 for L=128.
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FIG. 5. Scaled roughness distribution of KPZ interfaces in 2
+1 dimensions for sets C and D. Each symbol corresponds to the
same set of Fig. 3.
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FIG. 6. Effective exponents ��x� vs 1 /x2 of roughness distribu-
tions of KPZ interfaces in 2+1 dimensions. Each symbol corre-
sponds to the same set of Fig. 3.
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previously obtained in discrete models. Estimates of skew-
ness and kurtosis of those distributions were provided in or-
der to show the quantitative agreement with previous results.
We also showed evidence that the tails of the roughness dis-
tributions are stretched exponentials, which also agrees with
discrete model results and suggests the non-Gaussianity of
the steady state KPZ interfaces in 2+1 dimensions.

Our results are not able to improve the accuracy of simu-
lations of discrete models, which is expected for the compu-
tational limitations in the work with floating point opera-
tions. At first sight, this could seem to diminish the relevance
of the present work. However, we stress that the connections
between the lattice models and the KPZ equation do not
follow from rigorous mathematical proofs, and some models
are controversial at this point �e.g., ballistic deposition �42��.
Moreover, works on discrete models are not able to vary the
parameters of the corresponding KPZ equations in a system-
atic way; indeed, only two or three of those models provide
finite-size data which are clearly consistent with universality
�see e.g., Ref. �17��. Thus confirming results in the context of
the KPZ equation itself, with different parameter values, is of
great importance. As far as we know, this is the first quanti-

tative discussion on height and roughness distributions ob-
tained from integration of the KPZ equation in 2+1 dimen-
sions. Those quantities are very useful for a complete
characterization of a growth class, particularly due to the
effects of scaling corrections in the estimates of exponents.

We also believe that this work can motivate future studies
in higher dimensions, where the debate on the existence of a
finite upper critical dimension �the dimension where the non-
linearity is always irrelevant� still remains �14,43�, despite
the strong numerical evidence against it provided by results
of two lattice models �16,17�. Since such studies would de-
mand an efficient integration scheme to provide the best pos-
sible accuracy in reasonable simulation times, one must con-
sider the possible advantages of other approaches, such as
the pseudospectral methods �29,31�.
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